Национальный исследовательский университет "МЭИ"

Кафедра общей физики и ядерного синтеза

Лабораторная работа №7

<u>ОПЫТНОЕ ОПРЕДЕЛЕНИЕ МОМЕНТА ИНЕРЦИИ КРЕСТООБРАЗНОГО</u> МАЯТНИКА (МАЯТНИКА ОБЕРБЕКА)

Таблица 1

Спецификация измерительных приборов

Название прибора и	Пределы измерения	Цена деления	Инструментальная
его тип			погрешность

Данные установки

Масса груза на нити	$m_I = \kappa_{\Gamma}$	$\Delta m_1 = \kappa_{\Gamma}$	$\delta m_1 =$
Масса перегрузка	$m_2 = K\Gamma$	$\Delta m_2 = K\Gamma$	$\delta m_2 =$
Масса грузов на крестовине	$m_{\Gamma p} = \kappa_{\Gamma}$	$\Delta m_{\Gamma \mathrm{p}} = \mathrm{K}\Gamma$	$\delta m_{ m rp} =$
Момент инерции крестовины без грузов	$I_0 = 0,0124 \mathrm{kr}\cdot\mathrm{m}^2$	$\Delta I_0 = 0,00005 \mathrm{kg} \cdot \mathrm{M}^2$	$\delta I_0 = 4.0 \cdot 10^{-3}$
Радиус шкива	r = MM	$\Delta r = MM$	$\delta r =$
Расстояние грузов от оси вращения	R_{I} = MM	$\Delta R_I = MM$	$\delta R_I =$
Высота падения груза	h = MM	$\Delta h = MM$	$\delta h =$
Ускорение свободного падения	$g = 9,8066 \text{ m/c}^2$	$\Delta g = 0.00005 \text{ m/c}^2$	$\delta g = 5 \cdot 10^{-6}$
Число π	$\pi = 3,14159$	$\Delta\pi = 0,000005$	$\delta\pi = 1.5 \cdot 10^{-6}$

Таблица 2

Время движения грузов т

$\mathcal{N}_{\underline{0}}$	$R_1 = M$		$R_2 = M$				
	$m_1 = \kappa \Gamma$	$m_2 = \kappa \Gamma$	$m_1 = \kappa \Gamma$	$m_2 = \kappa \Gamma$			
	$ au_1$, c	τ ₂ , c	τ ₃ , c	τ ₄ , c			
1							
2							
3							
4							
5							
Cp.							

ГРУППА _______СТУДЕНТ________ДАТА ВЫПОЛНЕНИЯ______ПРЕПОДАВАТЕЛЬ