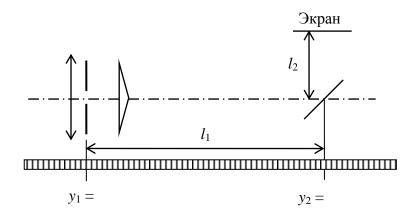
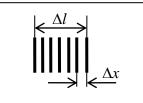
Протокол измерений к <u>лабораторной работе №42</u> Изучение интерференции на установке с бипризмой Френеля


Таблица 1 Спецификация измерительных приборов

Название прибора и его тип	Пределы	Цена	Инструментальная
пазвание приобра и его тип	измерения	деления	погрешность
Линейка оптической скамьи		2 мм	
Линейка экрана		1 мм	

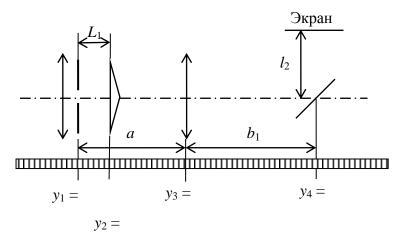
Данные установки


Длина волны излучения лазера $\lambda = 650.0$ нм, $\Delta \lambda =$ Расстояние от оптической оси скамьи до экрана $l_2 = 220$ мм, $\Delta l_2 =$ Показатель преломления материала бипризмы n = 1.51, $\Delta n =$

Задание 1 Определение ширины интерференционных полос

$$l_1 = y_2 - y_1 =$$
 $L = l_1 + l_2 =$

Таблица 2 Измерение расстояния между интерференционными полосами

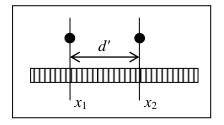

Δl , mm	Число светлых полос т	Δx , mm
10		
15		
20		
Сред	нее значение, $\Delta x_{\rm cp}$	

$$\Delta x_1 = \frac{\Delta l_1}{m_1 - 1} =$$

$$\Delta x_{\rm cp} = \frac{\Delta x_1 + \Delta x_2 + \Delta x_3}{3} =$$

	П	П
Студент	Преподаватель	Дата

Задание 2 Определение расстояния между изображениями мнимых источников



$$a = y_3 - y_1 =$$
 $b_1 = y_4 - y_3 =$

$$b = b_1 + l_2 =$$

$$L_1 = y_2 - y_1 =$$

Таблица 3 Измерение координат изображений мнимых источников

x_1 , MM	x_2 , MM	$d' = x_2 - x_1$, MM
Среднее значение, d'_{cp}		

$$d'_{cp} = \frac{d'_1 + d'_2 + d'_3}{3} =$$

Обработка результатов измерений

$$d = \frac{d'_{cp} a}{b} =$$

$$\lambda = \frac{\Delta x_{\rm cp} d}{L} =$$

$$\theta = \frac{d}{2L_1(n-1)} =$$

CTITION	Прополовони	Пото
Студент	Преподаватель	Дата